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Abstract: The first full-mission global AVHRR FRAC sea surface temperature (SST) dataset with a
nominal 1.1 km resolution at nadir was produced from three Metop First Generation (FG) satellites:
Metop-A (2006-on), -B (2012-on) and -C (2018-on), using the NOAA Advanced Clear Sky Processor
for Ocean (ACSPO) SST enterprise system. Historical reprocessing (‘Reanalysis-1’, RAN1) starts
at the beginning of each mission and continues into near-real time (NRT). ACSPO generates two
SST products, one with global regression (GR; highly sensitive to skin SST), and another one with
piecewise regression (PWR; proxy for depth SST) algorithms. Small residual effects of orbital and
sensor instabilities on SST retrievals are mitigated by retraining the regression coefficients daily,
using matchups with drifting and tropical moored buoys within moving time windows. In RAN, the
training windows are centered at the processed day. In NRT, the same size windows are employed but
delayed in time, ending four to ten days prior to the processed day. Delayed-mode RAN reprocessing
follows the NRT with a two-month lag, resulting in a higher quality and a more consistent SST record.
In addition to its completeness, the newly created Metop-FG RAN1 SST dataset shows very close
agreement with in situ data (including the fully independent Argo floats), well within the NOAA
specifications for accuracy (global mean bias; ±0.2 K) and precision (global standard deviation;
0.6 K) in a ~20% clear-sky domain (percent of clear-sky SST pixels to the total of ice-free ocean). All
performance statistics are stable in time, and consistent across the three platforms. The Metop-FG
RAN1 data set is archived at the NASA JPL PO.DAAC and NOAA NCEI. This paper documents the
newly created dataset and evaluates its performance.
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1. Introduction

Advanced Clear Sky Processor for Ocean (ACSPO) is the NOAA enterprise sea surface
temperature (SST) system. It is currently employed to produce a consistent line of SST prod-
ucts from several AVHRR GAC and FRAC, MODIS, and VIIRS sensors flown onboard low
Earth orbiting (LEO; NOAA-7/9/11/12/14/15/16/17/18/19, Metop-A/B/C, Terra/Aqua,
and S-NPP/NOAA-20), and ABI and AHI sensors flown onboard geostationary (GEO;
GOES-16/17 and Himawari-8) satellites [1–8].

The global AVHRR/3 Full Resolution Area Coverage (FRAC) data, with a nominal
resolution ~1.1 km at nadir and ~6 km at swath edge, have been available since the
launch of European satellite Metop-A (aka. Metop-2 prior to launch) on 19 October 2006,
followed by Metop-B (aka. Metop-1; 17 September 2012) and Metop-C (aka. Metop-3;
7 November 2018). Together, these three satellites comprise the Metop First Generation
(FG) series. Under the NOAA-EUMETSAT Initial Joint Polar System (IJPS) partnership,
NOAA produces several geophysical products from Metop-FG, including SST. Metop-A
will be de-orbited in November 2021 [9]. As of this writing, it remains fully operational,
and NOAA will continue producing Metop-A SST until the end of its mission. Although
the projected life expectancy of the Metop-FG satellites is only five years, based on the
Metop-A experience one may realistically expect that Metop-B/C data will continue well
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into the 2030s. At the same time, EUMETSAT started transitioning to the Metop Second
Generation (SG) series, which will carry a new METImage sensor onboard, with improved
SST capability. The first launch is expected in ~2023/24 and Metop-SG is planned to
continue into the 2040s. NOAA will produce SST from Metop-SG, under the renewed Joint
Polar System (JPS) partnership with EUMETSAT [10]), while continuing its core Joint Polar
Satellite System (JPSS; extension of the NOAA heritage Polar Operational Environmental
Satellites, POES system) along with Metop-FG SST products [11].

The global FRAC data are well suited for accurate clear-sky masking and high-quality
SST retrievals from AVHRR/3 bands 3b, 4, and 5, centered at 3.7, 10.8, and 12 µm, re-
spectively. To prepare for the Metop-SG era, and ensure its continuity with the Metop-FG
and POES/JPSS SSTs, the first full consistently reprocessed Metop-FG SST record was
created at NOAA with its ACSPO system [1–5]. The first historical reprocessing (RAN1)
starts after quality L1b data in the AVHRR infrared bands became available (1 December
2006 for Metop-A, 19 October 2012 for Metop-B, and 4 December 2018 for Metop-C), and
continues into near-real time (NRT), with several hours latency. Delayed-mode RAN
reprocessing follows the NRT with a two-month lag, resulting in a higher quality and
a more consistent SST record. Retrieved SSTs are available in three formats: L2P, L3U,
and L3S (e.g., [2,5,12,13] and references therein). All data are archived with the NASA
Physical Oceanography Distributed Active Archive Center (PO.DAAC) [14–19]. Archival
with the NOAA Centers for Environmental Information (NCEI) is also underway. Note
that prior to the AVHRR FRAC RAN1, the only Metop-FG SST data which existed were
two OSISAF NRT datasets produced by EUMETSAT and also available from PO.DAAC
(AVHRR_SST_METOP_A-OSISAF-L2P-v1.0 from 4 June 2013–23 November 2016 [20], and
AVHRR_SST_METOP_B-OSISAF-L2P-v1.0 from 19 January 2016–present [21]).

This study documents the AVHRR FRAC RAN1 dataset, with focus on the L2P data.
The performance of the L3U data is fully consistent with L2P and not discussed here. The
L3S data are documented in [12,13]. Time series of global biases and standard deviations
of retrieved SST minus quality controlled in situ SST are analyzed in the NOAA SST
Quality Monitor system (SQUAM, [22,23]). The in situ SSTs from drifting and tropical
moored buoys (D + TM) and Argo floats (AF), employed in the calibration and validation
(Cal/Val) of satellite data, come from another NOAA system, in situ SST Quality Monitor
(iQuam, [24,25]). Consistency checks against the Canadian Met Centre Level 4 analysis
(CMC L4 SST) are also performed in SQUAM, including analyses of clear-sky fraction
(percent of SST pixels to the total ice-free ocean pixels; cf. prior analyses for AVHRR GAC
RANs [2,8,26]). Quality of the ACSPO Clear-Sky Mask (ACSM) and SST imagery, as well
as the newly derived thermal fronts product, are monitored in the NOAA ACSPO Regional
Monitor for SST system (ARMS [27]).

2. ACSPO Algorithms

ACSPO generates two SST products, one with the global regression (GR) and the other
with the piecewise regression (PWR) algorithms. Both algorithms are regressions trained
against in situ SSTs obtained from (D + TM), with the GR trained in the full retrieval domain
and the PWR separately in its multiple segments. Note that the GR SST is also referred to
as the subskin SST since it is highly sensitive to spatial and temporal variations in skin SST,
TSKIN, being at the same time globally unbiased with respect to in situ (depth) SST, TIS [4].
The ACSPO GR subskin SST is produced similarly to the OSISAF Metop FRAC subskin
SST product [28], i.e., by direct training against in situ data. (This is in contrast with the
‘skin’ SSTs, produced by other retrieval systems, which either train the regression against
in situ SST and then subtract 0.17 K [29], or employ physical retrievals which should result
in ‘skin’ SST.) The PWR SST, on the other hand, is less sensitive to TSKIN, but more precise
with respect to depth TIS [3]. Due to its superior accuracy and precision of fitting TIS, the
PWR serves as a proxy for ‘depth’ SST, TDEPTH. The GR SST is reported in the ACSPO L2P
GDS2 files in the ‘sea_surface_temperature’ layer, whereas the ‘SSES_bias’ layer reports the
difference between the GR and PWR SSTs. One can obtain the PWR SST by subtracting the
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‘SSES_bias’ from the GR SST. (Correspondingly, the PWR SST is also referred below as the
‘Debiased’ SST).

Both ACSPO SSTs are calculated during day- and nighttime with different, two- and
three-band regression equations, respectively, with the switch-over occurring at the solar
zenith angle = 90◦. The daytime two-band SST equation takes the following form:

TS = a0 + a1T11 + a2(T11 − T12) + a3T11S + a4(T11 − T12)S + a5(T11 − T12)T0 + a6S (1)

The nighttime three-band equation is written as follows:

TS = b0 + b1T11 + b2(T11 − T3.7) + b3(T11 − T12) + b4T11S + b5(T11 − T3.7)S + b6(T11 − T12)S
+b7(T11 − T3.7)T0 + b8(T11 − T12)T0 + b9S

(2)

Here, T3.7, T11 and T12 are AVHRR brightness temperatures (BTs) at 3.7, 10.8, and
12 µm; S = sec(θ)− 1, θ is satellite view zenith angle (VZA); a1, a2, . . . , a6 and b1, b2, . . . , b9
are regression coefficients; a0 and b0 are offsets. T0 is the first-guess SST obtained by
interpolating the gridded L4 analysis to AVHRR pixels (note that RAN1 employs the
Canadian Meteorological Center Level 4 analysis, CMC L4 SST [30]).

The GR SSTs use daily-recalculated, globally non-variable sets of coefficients, one for
day and another one for night. Both are trained against (D + TM) in the corresponding
global data sets of matchups (MDS). The PWR SST uses multiple sets of coefficients, also
recalculated daily but trained against subsets of matchups, whose vectors of regressors,
R, belong to specific segments in the space of regressors (R-space). The total number of
segments, into which the R-space is subdivided, is 320. The PWR coefficients are calculated
for a given segment, if the corresponding subset includes at least 100 matchups. Otherwise
the GR coefficients are used. To avoid discontinuities in the PWR SST, its coefficients are
interpolated between the neighboring segments in the R-space. Detailed description of the
PWR algorithm can be found in [3]. During the retrieval, the PWR coefficients at a given
pixel are selected by the value of R.

Note that Equations (1) and (2) include more terms than the OSISAF equations [28].
Increased number of regressors is intended to extract maximum information from the
satellite observations. The risk of adding more regressors in the equation, however, is that
due to increased correlations between them within the training MDS, the estimated coeffi-
cients, produced with the conventional least-squares method, may become unstable. This
risk is minimized with the method documented in [31], which reduces the dimensionality
of the subspace, in which the vector of coefficients is estimated, by cutting off the least
informative dimensions in the R-space. This is aimed at extracting maximal information
from the regressors, while stabilizing the estimates of the coefficients.

Equations (1) and (2) both follow the conventional NLSST approach [32] by including
regressors depending on T0. The global correlation between the T0 and TIS is usually very
high (>0.9), and the inclusion of T0-dependent regressors in the GR equation improves
precision of fitting TIS with TS. However, the improved precision is even more noticeable
in the PWR SST (where the correlations of T0 with TIS are generally lower over segmental
subsets of matchups than within a global MDS). This is due to the fact that the same
number of predictors is applied over a limited set of atmospheric and SST conditions,
where a priori SST variability is reduced compared to the global MDS. The drawback of
using T0-dependent regressors is that the retrieved TS becomes sensitive to T0, while its
sensitivity to the ‘true’ TSKIN may degrade, if not controlled during the training process.
Note that the concept of sensitivity to ‘true’ SST was introduced in [33]. Sensitivity varies
across the full retrieval domain, and defines how well the spatial and temporal contrasts
in the ‘true’ TSKIN are captured in the retrieved satellite SST, TS, in each pixel (ideally, it
should be = 1). According to [34], the global mean nighttime sensitivities of the ACSPO GR
SSTs are ~0.97 for Metop-A and ~0.94 for Metop-B/C. The corresponding daytime statistics
are ~0.89 for Metop-A, ~0.88 for Metop-B and ~0.87 for Metop-C. The small differences
between the three Metops likely result from different AVHRR spectral response functions
(SRFs; shown in Figure 1) [35].
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Although the regression coefficients are individually trained for each satellite sensor
against the same iQuam (D + TM) SSTs, different SRFs may result in slightly different
performance of the corresponding SSTs. Nevertheless, as it will be shown later, the cross-
platform SST differences are small and do not affect their global performance statistics in
any statistically significant way.

In contrast with the GR SSTs, the mean sensitivity of the PWR SSTs is controlled
during the training. The segmental coefficients are initially calculated using a standard
least-squares method. If the mean sensitivity in a given segment is less than 0.4, then the
coefficients are recalculated with the segmental mean sensitivity constrained at 0.4, using
the method [31]. The global mean sensitivity of the resulting PWR SSTs is close to ~0.6.

The clear-sky identification is performed with the ACSPO Clear-Sky Mask (ACSM),
which employs a set of threshold-based filters [1]. The following four filters use retrieved
SSTs and measured BTs in the individual AVHRR IR bands as predictors:

1. SST filter (includes static and adaptive parts);
2. Warm SST filter (for low stratus clouds);
3. Low stratus filter (proved a useful addition to the ‘Warm SST filter’ above);
4. Spatial uniformity filter.

The above four filters are used during both day and night. During the daytime, the
ACSM also includes three additional filters:

5. Reflectance Relative Contrast filter;
6. Reflectance Gross Contrast filter;
7. SST/Reflectance Cross-Correlation filter.

Filters 5 and 6 use AVHRR reflectance bands 1 (0.63 µm) and 2 (0.87 µm). Filter 7 exploits
cross correlation between the band 1 reflectance and GR SST. All filters are binary, with
output being either “clear” (usable for SST) or “cloudy” (unusable for SST). The definition of
quality levels in ACSPO is based on the ACSM individual bit flags. Only pixels with QL = 5
(assigned when all filters are set to “clear”) are recommended for use, in all applications.

3. Variable Regression Coefficients

Metops are maintained in stable ‘mid-morning’ orbits, with local equator crossing
times, LEXTs~9:30 am/pm. This is achieved by performing periodical orbital corrections,
using available fuel onboard. (Note that the NOAA satellites comprising the US heritage
POES constellation, have no fuel onboard and basically operate in a ‘free-falling’ mode,
immediately after launch [36].) Figure 2 shows LEXTs for the three Metop-FG satellites, and
for the two most recent POES satellites, NOAA-18 and -19. The NOAA-18 and -19 were
launched in May 2005 and February 2009, respectively, into the standard POES ‘afternoon’
orbits with LEXT~1:30 am/pm, however, their LEXTs have significantly drifted since then.
In particular, by August 2021, NOAA-18 crossed the equator around LEXT~10 am/pm,
later than Metops, whereas the NOAA-19 still flied at ~7 am/pm, progressing towards
the nominal 9:30 am/pm Metop orbit [35–37]. The major Metops’ advantage is that they
observe ocean at about same local time during many years in space, thus minimizing the
effect of the diurnal cycle on retrieved SST, whereas the POES satellites move through
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almost full diurnal cycle during their shorter lifetimes. The Metop-A satellite ran out of fuel
in September 2016, and its orbit has not been controlled since then, making it a ‘free-falling’
object like all POES satellites [37]. The drifting POES orbits were a major motivation for
using variable regression coefficient in AVHRR GAC RAN1 [2]. From the LEXT perspective
(except for the past several years of Metop-A life), the need for those in Metop RAN is not
as compelling as it was in POES RAN.
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Figure 2. Local equator crossing times (LEXT) for Metop-A/B/C and NOAA-18/19. (From the
NOAA Sensor Stability for SST, 3S system [37,38] which calculates the LEXTs following [36].).

Another motivation for using variable regression coefficients in the GAC RAN1 was
the well-known instability of the AVHRR sensors onboard POES satellites (e.g., [37] and
references therein). In addition to flying in stable orbits, the bigger Metops provide better
housing for the AVHRRs. Together, these two factors are expected to lead to an over-
all more stable AVHRR performance. Figure 3 shows the nighttime gains in one of the
AVHRR/3 bands used for SST, 3b, for the three Metop and two POES satellites. Systematic
degradation takes place in all five AVHRRs, due to apparently similar processes of ageing
their fore optics, mirrors, and the overall sensor optical tracts. The changes on Metops are
smoother and more predictable, whereas the two POES AVHRRs show frequent irregu-
larities superimposed on the top of smooth degradation, in particular around the missing
nighttime data (which occur when the NOAA satellites fly in all-Sun orbits, and do not go
into Earth’s shadow during extended periods of time, up to several months).
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Time series of LEXTs and calibration gains provide a suggestive, yet indirect and
incomplete, evidence of sensor stability. Some other factors are not controlled or accounted
for in the calibration algorithm. For instance, the sensor SRFs may change during many
years in space. Immediate inputs into SST algorithms are BTs, and their time series provide
more direct verification of sensor stability for SST. The differences between the observed
BTs and those simulated with the Community Radiative Transfer Model (CRTM) [39]
(‘O-M biases’) are monitored in the NOAA Monitor of Infrared Clear-sky Radiances over
Ocean for SST (MICROS; [34,40]).

Full-mission time series of Metop-FG O-M biases are shown in Figure 4 (including the
3.7 µm band during the daytime, which however is only used for SST at night).
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Figure 4. Monthly aggregated Observation—Model (O-M) biases in AVHRR thermal bands
(top) 3.7 µm; (middle) 11 µm; (bottom) 12 µm of three Metop-FG satellites: (left) night; (right) day.
Data are from the NOAA MICROS system [34,40].

Note that systematic negative offsets in the O-M biases are expected, due to two
factors in the ‘M’ (using warmer depth CMC L4 SST, instead of cooler skin SST, and
unaccounted aerosols) and one factor in the ‘O’ (possible residual cloud in the observed
clear-sky BTs) [40]. On average, the AVHRR L1b calibration algorithm efficiently mitigates
the effect of smoothly degrading sensor gain, as expected. The O-M biases in different
bands and on different satellites often vary in sync (cf. the well-expressed seasonality in
all bands of all satellites). This is due to the inputs in the ‘M’ (CMC L4 SST and Global
Forecast System, GFS atmospheric profiles. For instance, the difference between satellite
skin and CMC depth SSTs varies regionally and seasonally). Some bands of some sensors
(e.g., Metop-B band 12 µm) are out of family, possibly due to their incorrectly calculated
CRTM coefficients (e.g., if their SRFs were measured incorrectly pre-launch, or CRTM
coefficients were in error, due to some other reason) [40]. Errors in the ‘M’ (including such
correlated and/or systematic) do not affect SST. However, when the O-M biases show
significant multidirectional and inconsistent (uncorrelated) variations (between different
bands, sensors, and day/night), those are due to the ‘O’ term (i.e., remaining sensor
calibration or characterization issues) which directly affect SST retrievals. Favorably for
Metops, such uncorrelated variations in their O’s are much smaller than they were in the
NOAA GAC data (whose effect on SST was corrected in AVHRR GAC RAN1 using variable
regression coefficients [2]).

As in the AVHRR GAC RAN1 [2], we first tried to use a fixed set of coefficients for an
initial version of Metop-FG RAN, and processed complete time series. Figure 5 shows the
resulting monthly global mean biases in GR—(D + TM) SSTs. Typically, the ∆Ts are within
a ~±0.1 K corridor, and well within the NOAA SST accuracy specifications of ±0.2 K (cf.
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~±0.2 K corridor in the AVHRR GAC SSTs derived with fixed coefficients [2]). However, the
systematic trends in the ∆Ts time series, and the remaining inconsistencies across individual
platforms, suggest that they are attributed to variable biases in satellite BTs, and variable
SST coefficients should mitigate them. The ‘initial’ L2P SST retrievals shown in Figure 5,
were used to collect matchups of clear-sky AVHRR BTs with in situ SSTs, from which
a set of variable regression coefficients was derived. This process was repeated several
times, until the biases in Ts with respect to TIS were minimized, stabilized and reconciled.
The remainder of this paper shows that using variable coefficients indeed significantly
improves the stability of the SST time series, and their cross-platform consistency.
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Figure 5. Monthly aggregated GR—(D + TM) SST biases computed with static regression coefficients:
(left): night; (right) day.

The variable regression coefficients for the GR and PWR SSTs are trained against
matchups with (D + TM) collected within a limited time windows around the processed
day. The size of time window is 91-day for the GR and 361-day for the PWR SSTs. The larger
window size for the PWR SST is intended to provide sufficient numbers of matchups for
specific segments in the R-space. The offsets of the GR and PWR equations are additionally
corrected using a shorter time window of 31-day size. In RAN, all training windows are
centered at the processed day. In the NRT processing, the training windows are of the
same size, but cover a period ending four to ten days before the processed day. The data,
processed in the NRT mode, are reprocessed later in the RAN mode, with a ~two-month
lag. Note that using variable regression coefficients does not affect the standard deviations
with respect to in situ data, and only serves to stabilize the corresponding mean global
biases, ∆Ts = Ts − TIS.

4. Validation

In this section, Metop FRAC SSTs are consistently validated against (D + TM) and
AF data from the NOAA iQuam system, using matchups collected within 10 km × 30 min
window. All satellite SST pixels in this window are matched up with the central in
situ anchor, forming a “one-to-many” MDS. Each pair in the MDS is considered an
independent match-up.

Figure 6 shows representative examples of nighttime yearly aggregated maps of GR—
(D + TM) and GR—AF SSTs for Metop-B in 2016. The coverage by the (D + TM) matchups
is close to uniform and globally representative (except in some areas with persistent cloud
and heavy aerosols—e.g., off the west coasts of the South/North Americas and Africa, and
tropical warm pool). Coverage with the AFs matchups is more uniform, although two
orders of magnitude sparser (cf. the number of observations, NOBS, in Figure 7).

4.1. Validation against Drifters and Tropical Moorings (D + TM)

Note that the (D + TM) are used to train both GR and PWR regressions, and recalculate
their coefficients in time, which maximally reconciles global satellite and in situ SSTs.
Validation against the same in situ data is not fully independent, and may appear non-
informative and even self-deceiving. We emphasize that it is still critically important,
from several perspectives. It helps to verify that the selected sets of regressors and the
training methodology are both adequate (i.e., the satellite data and adopted equations
allow accurate fitting of the in situ data, with minimal regional and temporal biases). Note
that daily recalculation of the regression coefficients (“calibration”) only minimally and
statistically insignificantly affects the global standard deviations (a measure of SST regional
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biases). Also, using wide time windows for “calibration” results in non-zero (but small)
global validation biases for each individual day. The global statistics vs. (D + TM) are
also informative to compare the relative performance of the PWR and GR SSTs. Note also
that compared to the AFs, the (D + TM) measure SST closer to the skin SST, sensed from
the satellite, and cover a wider global domain (including improved coverage in the high
latitudes), more densely and with more details. Moreover, availability of both (D + TM)
and AF validation results allows one to check for qualitative and quantitative consistency
between the dependent and independent in situ standards.
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Figure 8 shows yearly histograms of nighttime and daytime GR—(D + TM) and PWR—
(D + TM) SSTs for Metop-B in 2016. All histograms are close to Gaussian. The daytime
distributions are wider than the nighttime ones, likely due to degraded performance of
the daytime split-window two-band SST equation, compared to the nighttime three-band,
and increased diurnal signal during the day. The histograms for the PWR (depth) SSTs are
significantly narrower than for the GR (subskin) SST, as expected. The yearly statistics are
based on ~24 million matchups and are statistically significant and globally representative.
The results for Metop-A and -C (not shown) are largely consistent with Metop-B shown in
Figure 8.

Figures 9 and 10 show full Metop-FG time series of the 24-h aggregated global mean
biases and SDs with respect to (D + TM). NOAA SST requirements are ±0.2 K for the
accuracy (global mean biases wrt. in situ data) and 0.6 K for the precision (corresponding
SDs). Both nighttime and daytime biases are stable and meet the NOAA specs, with a wide
margin. The PWR SSTs are more consistent with (D + TM), with biases being closer to zero
and forming a tighter cluster than for the GR SST. The SDs are also consistent across all
three satellites, for both GR and PWR. The daytime and nighttime SDs compare favorably
with the NOAA specifications, with the PWR SDs exceeding the NOAA requirements with
a wider margin. Seasonal variations in the daytime SDs in Figure 10 are caused by the
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regional and seasonal differences in the diurnal warming cycles between the subskin and
in situ depth SSTs.
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4.2. Validation against Argo Floats (AF)

The AFs were not used for the training of the regression SST equations and thus
represent an independent validation data set. Figure 11 shows histograms against AFs,
similar to those against (D + TM) in Figure 8. Their shape remains near-Gaussian, but with
slightly positive biases, due to the (D + TM) being closer to the surface (~0.2–1.0 m) and
warmer than the ~6 m-deep measurements from the AFs.
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Both the GR and PWR SSTs are on average 0.03–0.04 K warmer than the AFs (cf. ~+0.02 K
biases in Figure 8), due to training against slightly shallower and warmer (D + TM). The
AF validation statistics continue showing seasonal cycle, due to different phasing of
the SST diurnal thermocline in the Northern and Southern Hemispheres. Despite AF
monthly aggregation (vs. daily for the D + TM, to mitigate their approximately two
orders of magnitude different daily NOBS), all AF statistics are noisier than their (D + TM)
counterparts. Two major factors are deemed to be contributing to the increased noise:
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AF’s being independent from, and most importantly, measuring much deeper than the
(D + TM). Typical SDs of the GR SST wrt. AFs (0.35–0.37 K at night and 0.42–0.48 K during
the daytime) are increased from the corresponding (D + TM) statistics (0.34–0.35 K at
night and 0.37–0.40 K for the day). The same trends are seen in the PWR SST: 0.28–0.31 K
(AF) vs. 0.27–0.28 K (D + TM) at night, and 0.34–0.36 K vs. 0.29–0.30 K during the day.
Importantly, the validation against fully independent AFs remains largely within the
NOAA requirements, and consistent across all three platforms.
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5. Consistency with CMC L4

Figure 14 shows example yearly composite maps of Metop-B ACSPO—CMC L4 SST
in 2016, for night and day. Note that the CMC L4 analysis currently does not assimilate
the ACSPO Metop data. Being a fully independent dataset, the CMC L4 product is thus
appropriate for additional verification of the newly derived Metop-FG SST dataset.
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Figure 14. Yearly composite maps of Metop-B ACSPO—L4 CMC SST in 2016. (Top) night; (bottom)
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Overall, the ACSPO Clear-Sky Mask (ACSM) is efficient in preventing significant
cloud leakages in retrieved SSTs. However, suppressed GR SSTs (with ∆TS < −0.1 K) are
seen in the Arabian Sea, off the West Africa, South America, East Asia, and South Australia.
All these areas are characterized by persistent cloud and elevated aerosols, and the ACSM
may miss some of those. The ACSPO PWR (depth) SST successfully mitigates many of
these coldish spots and is closer to the ‘foundation’ CMC L4 SSTs than the GR (subskin)
SST, as expected. In some cases, however, the PWR SST is biased colder than the GR (high
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latitudes in both Northern and Southern Hemispheres). It is not immediately clear what
product represents the true SST more closely, and more analyses are needed to validate SST
at the high latitudes.

Figure 15 shows time series of the global mean biases wrt. CMC L4 SST. At night
(~9:30 pm local time, LT), ACSPO SST closely agrees with the ‘foundation’ CMC L4 SST
during the boreal winters. However, during the boreal summers, it develops seasonal warm
biases up to ~0.2 K (likely due to residual diurnal warming at ~9:30 pm, during the periods
when the insulation during the daytime is high and wind mixing suppressed). The daytime
(~9:30 am LT) biases are centered at ~0 K. The PWR SSTs exhibit the same seasonality as
the GR SST, except the three Metops are now clustered much tighter. Being ‘depth’ SST, it
is expected to agree better with the ‘foundation’ CMC L4. Metop-A starts deviating from
the daily CMC L4 SST in recent years, due to its orbital shift from 9:30 am/pm in 2016 to
~8 am/pm in August 2021.
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Figure 15. Time series of global ACSPO—L4 CMC SST mean biases. (Top) night; (bottom) day;
(left) GR; (right) PWR.

Figure 16 shows the global Double Differences, defined as DD = [(ACSPO day—CMC
L4 SST)—(ACSPO night—CMC L4 SST)]. Note that DDs are widely used in climatology
and sensor calibration communities (e.g., [40] and references therein), to compare statistics
of the two fields measured in different domains. The CMC L4 SST being subtracted from
the day and night SSTs, largely cancels out and leaves DD representing the diurnal signal
in satellite SSTs. The DD ~−0.05 K suggests that globally, daytime SST at ~9:30 am LT is
on average 0.05 K cooler than nighttime SST at ~9:30 pm LT. Apparently, some residual
diurnal warming still remains at 9:30 pm, which subsequently cools off over night, and
does not warm up as much before the 9:30 am. This demonstrates the potential of the
Metop-FG SST to measure a subtle diurnal change and its stability over time. The other
impressive characteristic is capturing the increasing Metop-A DD after year 2018, due to
its de-orbiting and shifting LEXT to the earlier hours (~8 am/pm as of August 2021 [38]).
Cooling between 8 pm and 8 am is even larger, up to >0.10 K, due to larger diurnal residual
remaining at 8 pm. Diurnal signal in the PWR SST is comparable to that in the GR SST, but
less noisy, and more cross-platform consistent.
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L4 CMC) SST Double Differences. (Left) GR; (right) PWR.

Figure 17 shows SDs of ACSPO—CMC L4 SST (corresponding to mean biases in
Figure 15). All time series are stable in time, suggesting that the ACSPO L2P and CMC L4
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datasets are very consistent, while being fully independent. The SDs of the PWR SSTs are
noticeably smaller than for the GR SST, and form tighter clusters across the three satellites.
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high-latitude situations being under-represented in the training MDS, which requires ex-
trapolation of the SST retrieval algorithm to situations not well covered by the global 
MDS. The second prominent feature of Figure 19 are the “cold arches” in the NH. They 
originate from the calibration errors caused by Sun impingement on the AVHRR black 
body calibration target, when the satellite orbit approaches the terminator from the dark 
side of the Earth. Note that this effect has intensified in Metop-A SST since 2019, approx-
imately three years after its orbit ceased being controlled. More detailed (but still prelim-
inary) discussions of this effect are found in [7].  

Figure 17. Same as in Figure 15 but for the corresponding global standard deviations (SDs).

Figure 18 shows the time series of nighttime and daytime clear-sky fractions (i.e., the
percent of clear-sky pixels, identified by the ACSM, to the total of ice-free ocean pixels). The
daily clear-sky fractions are consistent across three platforms (at ~20–22%, on average) and
show an approximately ±2% seasonality. Note that NOAA requirements for SST coverage
are 18%, and the Metop-FG RAN1 product fully meets it.

Remote Sens. 2021, 13, 4046 14 of 20 
 

 

 
Figure 17. Same as in Figure 15 but for the corresponding global standard deviations (SDs). 

Figure 18 shows the time series of nighttime and daytime clear-sky fractions (i.e., the 
percent of clear-sky pixels, identified by the ACSM, to the total of ice-free ocean pixels). 
The daily clear-sky fractions are consistent across three platforms (at ~20-22%, on average) 
and show an approximately ±2% seasonality. Note that NOAA requirements for SST cov-
erage are 18%, and the Metop-FG RAN1 product fully meets it. 

 
Figure 18. Time series of 24hr aggregated (left) night and (right) day clear-sky fractions (in %). 

6. Latitudinal Hovmöller Diagrams of Biases with Respect to (D + TM) 
Time series presented in Sections 4 and 5 suggest that the global statistics of the 

ACSPO Metop FRAC SSTs are stable in time and consistent across three platforms. This 
section additionally analyzes residual latitudinal dependencies of the SST biases.  

Figure 19 shows nighttime Hovmöller diagrams of GR – (D+TM) SST biases. All three 
products exhibit warm biases in the Southern Hemisphere (SH) high latitudes, reaching 
~0.2-0.3 K, during the SH summers, and almost simultaneously, cold biases up to -0.2 K 
in the Northern Hemisphere (NH) high latitudes. Increased biases may be due to these 
high-latitude situations being under-represented in the training MDS, which requires ex-
trapolation of the SST retrieval algorithm to situations not well covered by the global 
MDS. The second prominent feature of Figure 19 are the “cold arches” in the NH. They 
originate from the calibration errors caused by Sun impingement on the AVHRR black 
body calibration target, when the satellite orbit approaches the terminator from the dark 
side of the Earth. Note that this effect has intensified in Metop-A SST since 2019, approx-
imately three years after its orbit ceased being controlled. More detailed (but still prelim-
inary) discussions of this effect are found in [7].  

Figure 18. Time series of 24 h aggregated (left) night and (right) day clear-sky fractions (in %).

6. Latitudinal Hovmöller Diagrams of Biases with Respect to (D + TM)

Time series presented in Sections 4 and 5 suggest that the global statistics of the
ACSPO Metop FRAC SSTs are stable in time and consistent across three platforms. This
section additionally analyzes residual latitudinal dependencies of the SST biases.

Figure 19 shows nighttime Hovmöller diagrams of GR—(D + TM) SST biases. All three
products exhibit warm biases in the Southern Hemisphere (SH) high latitudes, reaching
~0.2–0.3 K, during the SH summers, and almost simultaneously, cold biases up to −0.2 K
in the Northern Hemisphere (NH) high latitudes. Increased biases may be due to these
high-latitude situations being under-represented in the training MDS, which requires
extrapolation of the SST retrieval algorithm to situations not well covered by the global
MDS. The second prominent feature of Figure 19 are the “cold arches” in the NH. They
originate from the calibration errors caused by Sun impingement on the AVHRR black body
calibration target, when the satellite orbit approaches the terminator from the dark side of
the Earth. Note that this effect has intensified in Metop-A SST since 2019, approximately
three years after its orbit ceased being controlled. More detailed (but still preliminary)
discussions of this effect are found in [7].

Figure 20 shows the latitudinal Hovmöller diagrams of nighttime PWR—(D + TM)
SST biases. The high-latitude anomalies are reduced but not fully eliminated.

Figures 21 and 22 show the daytime latitudinal Hovmöller diagrams for GR– (D + TM)
and PWR– (D + TM) SSTs, respectively. The calibration artifacts are not seen in the daytime
diagrams, but the warm biases in the Southern high and low latitudes are still present.
Recall that these areas are under-represented in the corresponding MDS. The systematic
cold biases in daytime SSTs are also noticeable in the 0◦–20◦ N latitudinal band.
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Figure 20. Same as in Figure 19 but for nighttime PWR—(D + TM) SST.

As for the nighttime anomalies, the daytime PWR shown in Figure 22 reduces the SST
anomalies but does not eliminate them fully. This may require fine-tuning or revisiting the
PWR and training algorithms, in the future AVHRR FRAC Reanalyses.

To summarize, high-latitude biases are seen in both GR and PWR SSTs. Those are
due to a combination of the suboptimal AVHRR calibration on the current operational L1b
data and limitations of the adopted SST equations, in conjunction with relatively sparse
coverage of the near-polar regions with matchups. The GR in the high latitudes basically
represents an extrapolation of the fitting the low-to-mid-latitudes matchups. The PWR
SST does not mitigate these biases either (recall that the PWR coefficients are calculated
only if a sufficient number of matchups is available within a given segment in the R-space;
otherwise, the GR coefficients are used, which is often the case in the high-latitudes, where
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matchups are very sparse). Improved AVHRR calibration and SST algorithms will be
explored in the next AVHRR FRAC Reanalysis, RAN2.
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Figure 22. Same as in Figure 19 but for daytime PWR—(D + TM) SST.

7. Thermal Fronts

The AVHRR FRAC RAN1 dataset was produced with ACSPO v2.80, which includes
two new layers in the output files: ’sst_front_position’ and ‘sst_gradient_magnitude’,
derived from the GR SST. The first layer represents a bit indicating the presence of the
front in a given pixel. The second layer gives the magnitude of the front (NaN, if no
front presence bit is set). Below we briefly illustrate the new ACSPO functionality, for
interested users.
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Figure 23 shows the nighttime GR SST over the Georges Bank/Nantucket Shoals on
1 August 2021, with and without ACSM and thermal fronts overlaid. Visually, the thermal
fronts shown in the right panel, well capture the positions of SST gradients. Validation
and documentation of this new ACSPO thermal fronts product is underway and will be
reported elsewhere.
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Figure 23. Nighttime maps of GR SST in the Georges Bank/Nantucket Shoals on 1 August 2021. The
left map is an ‘all-sky’ SST, the right map applies the ACSPO Clear-Sky Mask (ACSM; rendered in
grey) and overlays thermal fronts (in black lines). Maps are taken from the NOAA ACSPO Regional
Monitor for SST system (ARMS) [27]. Land is rendered in dark brown.

Another observation from Figure 23 is that the current ACSM performs reasonably
well in the lower and upper parts of the image, whereas in the central area, it over-screens
dynamic SST features. Even more over-screening may occur on some other days and/or
areas (not shown). Oftentimes, if clouds are present in the scene, the current ACSM typically
captures them quite well, but tends to over-screen, especially in coastal and dynamic areas.
Work is underway to mitigate this overly conservative nature of the current ACSM.

8. Summary

The first complete and consistent global SST record from 1-km AVHRR FRAC data
onboard three Metop-FG (Metop-A, -B and -C) was created with the NOAA Advanced
Clear-Sky Processor for Ocean (ACSPO) version 2.80 SST system. The 1st historical repro-
cessing (Reanalysis-1, RAN1) goes back to the beginning of each satellite mission, and
continues into near-real time (NRT). Special steps are taken to process NRT data maximally
consistently with RAN, given the lack of the right-hand side of the time scale in real time
operations. Improved science-quality RAN reprocessing follows the NRT processing, with
a two-month lag.

Metop AVHRR FRAC BTs are more stable than in the NOAA AVHRR GAC data [2].
Nevertheless, they still suffer from residual instabilities on order of several tenths of a
degree Kelvin. Those are mitigated by daily recalculation of regression coefficients against
match-ups with iQuam Drifters and Tropical Moorings. In FRAC RAN1, the coefficients
are calculated using matchups collected within time windows centered at the processed
day. In NRT, the coefficients are derived from delayed windows of the same size ending
from 4 to 10 days before the processed day. Anchoring satellite SSTs to (D + TM) reconciles
satellite SSTs with in situ data, and across different platforms. It does not however affect
the global SDs, which remain the same as in the data processed with fixed SST coefficients.

Independent validation against Argo floats confirms that derived SSTs are indeed sta-
ble in time and highly cross-platform consistent. Significantly sparser number of matchups,
and deeper depths of AF measurements (~6 m), leads to noisier validation statistics,
but the satellite SSTs continue meeting, and often exceeding with a wide margin, the
NOAA specifications.

Additional consistency checks against CMC L4 SST (also fully independent of the
Metop-FG RAN1) suggest that other than meeting the formal NOAA requirements, the
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newly created dataset is capable of supporting a wide variety of finer analyses and applica-
tions. In particular, for the first time it is demonstrated that a LEO product can successfully
resolve a tiny diurnal SST signal between ~9:30 pm/am LT, a ~0.05 K cooling. Metop-A
orbital degradation (to ~8 pm/am in August 2021) increases this diurnal signal to ~0.10 K.

Temporal anchoring of the ACSPO to (D + TM) SSTs reconciles satellite and in situ
data. The ACSPO PWR SST (calculated in current ACSPO as GR SST minus SSES bias)
further reduces the variability of global ACSPO minus in situ SST deltas. Moreover, the
PWR SST reduces regional biases, thus improving the standard deviation of fitting in situ
SSTs. Using the PWR SST, derived with variable regression coefficients, ensures using most
stable time series, in conjunction with minimized regional biases.

Linking satellite SST to in situ SSTs has its merits and advantages, as confirmed by
the evaluation of the newly produced AVHRR FRAC RAN1 dataset. By design, satellite
SSTs are maximally reconciled with in situ data, at the stage of data production. Note
that oftentimes, such satellite—in situ SST reconciliation is carried out by the L4 data
producers, at the stage of assimilating satellite L2/3 data in their analyses. As a first step,
they ‘bias-correct’ satellite SSTs and reconcile it with in situ SST. The FRAC RAN1 dataset
meets users half way, in their desire of two maximally consistent data sets. L4 producers
are still welcome to run their standard bias-correction (which however is expected to be of
less value to the data assimilation, but this expectation must be independently tested and
verified). The major challenge of the methodology relying on anchoring satellite SSTs to in
situ data, is that one needs to ensure that the in situ dataset employed for such anchoring,
is of high quality, globally representative (in terms of their spatial distribution), and stable
and consistent in time. More analyses are needed to ensure that these conditions are indeed
met, and no significant artifacts introduced in the satellite product, due to the evolving,
not fully uniform and/or globally representative/fully optimal, in situ SST network. In
that regard, the Metop-FG era from 2006-on is relatively rich with in situ data, compared to
much more challenging earlier satellite years (1980–90s).

The new feature of the AVHRR FRAC data set is the availability of two additional
layers, which characterize the positions and intensity of the ocean thermal fronts. This is a
new product, derived and provided following numerous users’ requests. Its evaluation
and documentation is still underway, as of this writing.

The ongoing next stage of the Metop FRAC SST Reanalysis is the mitigation of the
AVHRR L1B calibration errors near the terminator, which causes cold biases in the northern
hemisphere. Improvements to the ACSPO Clear-Sky Mask (to mitigate the overly conserva-
tive performance in the dynamic and coastal areas, and remaining cold biases in the highly
cloudy and aerosol-contaminated areas), and to the SST retrieval, error characterization
and training algorithms (to mitigate the remaining regional, including the high latitude
warm biases) are also being explored. These and other improvements based on users’
feedback (as well as resulting from our own use of the individual sensor L3U data to
produce super-collated L3S-LEO-AM product from 3 Metops [13]) will be explored in the
next release of Metop-FG AVHRR FRAC RAN2, tentatively planned in 2024.

The full mission RAN1, complemented with NRT data, has been archived at NASA/JPL
PO.DAAC [14–19], and is being ingested at the NOAA NCEI, at the time of this report.
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